About: dbpedia:Valentiner_group   Goto Sponge  NotDistinct  Permalink

An Entity of Type : owl:Thing, within Data Space : platform.yourdatastories.eu:8890 associated with source document(s)

In mathematics, the Valentiner group is the perfect triple cover of the alternating group on 6 points, and is a group of order 1080. It was found by Herman Valentiner (1889) in the form of an action of A6 on the complex projective plane, and was studied further by Wiman (1896). All perfect alternating groups have perfect double covers. In most cases this is the universal central extension.

AttributesValues
rdfs:comment
  • In mathematics, the Valentiner group is the perfect triple cover of the alternating group on 6 points, and is a group of order 1080. It was found by Herman Valentiner (1889) in the form of an action of A6 on the complex projective plane, and was studied further by Wiman (1896). All perfect alternating groups have perfect double covers. In most cases this is the universal central extension.
is known for of
Faceted Search & Find service v1.13.91 as of Nov 14 2017


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3212 as of Mar 29 2016, on Linux (x86_64-unknown-linux-gnu), Single-Server Edition (68 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2026 OpenLink Software