In statistics, canonical-correlation analysis (CCA) is a way of making sense of cross-covariance matrices. If we have two vectors X = (X1, ..., Xn) and Y = (Y1, ..., Ym) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of the Xi and Yj which have maximum correlation with each other. T. R.
| Attributes | Values |
|---|
| rdfs:comment
| - In statistics, canonical-correlation analysis (CCA) is a way of making sense of cross-covariance matrices. If we have two vectors X = (X1, ..., Xn) and Y = (Y1, ..., Ym) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of the Xi and Yj which have maximum correlation with each other. T. R.
|
| is known for
of | |
Faceted Search & Find service v1.13.91 as of Nov 14 2017
OpenLink Virtuoso version 07.20.3212 as of Mar 29 2016, on Linux (x86_64-unknown-linux-gnu), Single-Server Edition (68 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2026 OpenLink Software