The Miller–Rabin primality test or Rabin–Miller primality test is a primality test: an algorithm which determines whether a given number is prime, similar to the Fermat primality test and the Solovay–Strassen primality test. Its original version, due to Gary L. Miller, is deterministic, but the determinism relies on the unproven Extended Riemann hypothesis; Michael O. Rabin modified it to obtain an unconditional probabilistic algorithm.
| Attributes | Values |
|---|---|
| rdfs:comment |
|
| is known for of |