About: dbpedia:Modularity_theorem   Goto Sponge  NotDistinct  Permalink

An Entity of Type : owl:Thing, within Data Space : platform.yourdatastories.eu:8890 associated with source document(s)

In mathematics, the modularity theorem (formerly called the Taniyama–Shimura conjecture and several related names) states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's last theorem. Later, Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor extended Wiles' techniques to prove the full modularity theorem in 2001.

AttributesValues
rdfs:comment
  • In mathematics, the modularity theorem (formerly called the Taniyama–Shimura conjecture and several related names) states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's last theorem. Later, Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor extended Wiles' techniques to prove the full modularity theorem in 2001.
is known for of
Faceted Search & Find service v1.13.91 as of Nov 14 2017


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3212 as of Mar 29 2016, on Linux (x86_64-unknown-linux-gnu), Single-Server Edition (68 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software