Segal's Burnside ring conjecture, or, more briefly, the Segal conjecture, is a theorem in homotopy theory, a branch of mathematics. The theorem relates the Burnside ring of a finite group G to the stable cohomotopy of the classifying space BG. The conjecture was made by Graeme Segal and proved by Gunnar Carlsson. As of 2006, this statement is still commonly referred to as the Segal conjecture, even though it now has the status of a theorem.
| Attributes | Values |
|---|
| rdfs:comment
| - Segal's Burnside ring conjecture, or, more briefly, the Segal conjecture, is a theorem in homotopy theory, a branch of mathematics. The theorem relates the Burnside ring of a finite group G to the stable cohomotopy of the classifying space BG. The conjecture was made by Graeme Segal and proved by Gunnar Carlsson. As of 2006, this statement is still commonly referred to as the Segal conjecture, even though it now has the status of a theorem.
|
| is known for
of | |
Faceted Search & Find service v1.13.91 as of Nov 14 2017
OpenLink Virtuoso version 07.20.3212 as of Mar 29 2016, on Linux (x86_64-unknown-linux-gnu), Single-Server Edition (68 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2026 OpenLink Software