This HTML5 document contains 1 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpediahttp://dbpedia.org/resource/
Subject Item
dbpedia:Paris–Harrington_theorem
rdfs:comment
In mathematical logic, the Paris–Harrington theorem states that a certain combinatorial principle in Ramsey theory, namely the strengthened finite Ramsey theorem, is true, but not provable in Peano arithmetic. This was the first "natural" example of a true statement about the integers that could be stated in the language of arithmetic, but not proved in Peano arithmetic; it was already known that such statements existed by Gödel's first incompleteness theorem.